Skip to main content

New study, conducted by Webb, suggests that rocky planets may form in extreme Environments.

 



Astronomers, utilizing NASA's James Webb Space Telescope, have achieved a groundbreaking milestone by observing water and other molecules within the intensely irradiated inner regions of a disk involved in the formation of rocky planets. This extraordinary feat, part of the eXtreme Ultraviolet Environments (XUE) James Webb Space Telescope program, sheds light on the conditions conducive to the formation of terrestrial planets in environments previously considered extreme.


The focus on characterizing planet-forming disks within massive star-forming regions unveils insights into the environments where most planetary systems likely originated. These findings offer a broader perspective on the potential range of conditions influencing terrestrial planet formation, providing essential knowledge for understanding the diversity of exoplanets in various environments across our galaxy.


The eXtreme Ultraviolet Environments (XUE) program focuses on examining 15 disks within three regions of the Lobster Nebula (NGC 6357), situated approximately 5,500 light-years away in the Scorpius constellation. As one of the youngest and closest massive star-forming complexes, the Lobster Nebula harbors some of the galaxy's most massive stars, emitting substantial ultraviolet (UV) radiation. The intense UV radiation from these massive stars can disperse gas, potentially shortening the expected lifetime of protoplanetary disks to as little as a million years.


With the unique capabilities of the James Webb Space Telescope, astronomers can now investigate the impact of UV radiation on the inner regions of rocky-planet forming disks around stars, including those akin to our Sun. María Claudia Ramírez-Tannus from the Max Planck Institute for Astronomy in Germany, the team lead, emphasizes that Webb's spatial resolution and sensitivity make it the sole telescope capable of studying these disks in massive star-forming regions.


The astronomers involved in the eXtreme Ultraviolet Environments (XUE) program are dedicated to characterizing the physical attributes and chemical makeup of the rocky-planet-forming regions within the disks of the Lobster Nebula, employing the Medium Resolution Spectrometer on the James Webb Space Telescope's Mid-Infrared Instrument (MIRI). The initial focus of their efforts centers on XUE 1, a protoplanetary disk situated within the star cluster Pismis 24.


Team member Arjan Bik from Stockholm University underscores the critical role of MIRI's wavelength range and spectral resolution, which uniquely enable the examination of the molecular inventory and physical conditions within the warm gas and dust environments where rocky planets take shape.


XUE 1 shows data from a protoplanetary disk.





The spectral data from the protoplanetary disk, XUE 1, within the star cluster Pismis 24, provides intriguing insights. Highlighted in blue, the inner disk of XUE 1 exhibits distinct signatures of water, alongside acetylene (C2H2) in green, hydrogen cyanide (HCN) in brown, and carbon dioxide (CO2) in red. Notably, some emissions are weaker than predicted by models, hinting at a potentially smaller outer disk radius.


Positioned in proximity to several massive stars in NGC 6357, XUE 1 has likely experienced continual exposure to high levels of ultraviolet radiation. Despite this extreme environment, the research team detected a diverse range of molecules—key building blocks for the formation of rocky planets. This finding challenges previous assumptions about the limits of planetary formation in such intense radiation environments.


The inner disk surrounding XUE 1, as revealed by the team, closely resembles those in nearby star-forming regions, according to Rens Waters of Radboud University in the Netherlands. Detection of water, along with molecules like carbon monoxide, carbon dioxide, hydrogen cyanide, and acetylene, provides valuable insights. However, the observed emission is weaker than some models predicted, indicating a potentially smaller outer disk radius. The groundbreaking aspect, highlighted by Lars Cuijpers of Radboud University, is the first-time detection of these molecules under extreme conditions.


Additionally, the team identified small, partially crystalline silicate dust at the disk's surface, considered the building blocks of rocky planets. These findings bode well for rocky planet formation, suggesting that the inner disk's conditions mirror those in well-studied regions where only low-mass stars form. This challenges previous assumptions, indicating that rocky planets can potentially form in a much broader range of environments than previously believed.


The XUE 1 spectrum shows the presence of CO.





The spectral data from the protoplanetary disk, XUE 1, situated in the star cluster Pismis 24, unveils observed signatures of carbon monoxide across the range of 4.95 to 5.15 microns. This insight into XUE 1 serves as a vital step in understanding the conditions conducive to rocky planet formation. The team emphasizes that additional observations from the ongoing XUE program are crucial to establishing the prevalence of these conditions.


Lead researcher Ramírez-Tannus states, “XUE 1 shows us that the conditions to form rocky planets are there, so the next step is to check how common that is. We will observe other disks in the same region to determine the frequency with which these conditions can be observed.” The findings have been detailed in The Astrophysical Journal, marking a significant contribution to our understanding of planet formation in extreme environments.

Comments

Popular Post

In the triple-star system, KOI-5Ab is seen orbiting the primary star...

  KOI-5Ab continues to be a topic of discussion for researchers, as koi-5Ab has been seen orbiting the primary Star, confirming it has also been announced.  koi-5ab revolves around the primary star, it was thought to be a planet half the size of Saturn in a planetary system, and was the only other planet candidate to be detected by the KOI-5Ab mission. Kepler mission operations were initiated by NASA in 2009, by the end of spacecraft operations in 2018, the Kepler spacecraft had discovered 2,394 exoplanets, or planets orbiting stars beyond our sun, and about 2,366 exoplanets such  There are also those, which are still to be confirmed. David Ciardi, chief scientist at NASA's Exoplanet Science Institute, says the KOI-5AB was abandoned, because it was complicated, and we had thousands of candidates, and we were learning something new every day from Kepler, so that the KOI  Mostly forgot to -5. KOI-5Ab is part of the Triple Star system, where KOI-5 is a group of three st...

NASA's Spitzer Space Telescope will be closed.

NASA briefly informed that the Spitzer Space Telescope will be permanently discontinued on January 30, 2020. After about 16 years of discovering the universe in light energy.  And by that time, the space shuttle has been working for more than 11 years beyond its prime mission, Spitzer examines the universe's various objects in infrared light.  It was in 2003 through the rocket that the American Space Research Organization NASA entered the space and entered the orbit around the Earth.  Spitzer rotates the sun on a path similar to that of the Earth but it runs a bit slower.  Today it is about 158 ​​million miles (254 million kilometers) away from our planet - more than 600 times the distance between Earth and Moon.  The spacing of Spitzer's orbit curve means that when the spacecraft indicates its fixed antenna on the earth to download data or receive commands, its solar panels tend to lean away from the sun.  During those periods, to operate the space shut...

SpaceX is launching its next dragon spacecraft.

SpaceX is preparing for its next mission, very soon Spacex will launch the Dragon Spacecraft with its Falcon 9 Rocket.   SpaceX is the 18th commercial reproduction service mission, dragon spacecraft will be loaded with dozens of experiments made in space.  Launch date: Sunday, July 21, 2019 at 7:35 pm  International Space Station (ISS) us  The National Laboratory SpaceX's dragon is giving a finalization to more than two dozen payloads for launch in a circular circular laboratory.  Many of these payloads are aimed at improving human health on the earth, many of which are focused on drug development.  In addition, a series of payloads from identified private sector partners will be launched on this mission.  More than 40 student experiments and demonstrations have been included on the 18th Commercial Recepti Services Mission (CRS-18) of SpaceX.  One part of ISS American National Laboratory's goal is to encourage and engage next generation scientists.                          ...

NASA's review of the flight design of the Nancy Grace Roman Space Telescope successfully confirmed.

Critical design work for the NASA Nancy Grace Roman Space Telescope has been completed, and the design analysis has also been successfully completed, indicating that all design and developmental engineering work is now complete.  The Nancy Grace Roman Space Telescope is being managed at NASA's Goddard Space Flight Center in Greenbelt, Maryland, along with NASA's Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science stream consisting of various scientists  team is involved. After an analysis of extensive hardware testing and sophisticated modeling, an independent review panel confirms that the observatory we used, said Julie McEnery, senior project scientist for the Roman Space Telescope at NASA's Goddard Space Flight Center in Greenbelt, Maryland. Ready, it will work. Julie McNairy says of the Roman Space Telescope, what we know, what it will look like, and what it is capable of doing, and now th...

SpaceX,Dragon Cargo Returns Mission in Pacific ends with SplashDown

                                                                                                                                                        SpaceX dragon cargo spaceship dropped at 5:48 pm in the Pacific Ocean.  The EDT (2:48 p.m. PDT) is located approximately 202 miles southwest of Long Beach, California, which is located at the end of the company's 17th contracted Cargo Resipulli mission for NASA.  Spacecraft returned more than 4,200 pounds for other valuable scientific uses. Some scientific investigations of Dragon's return to Earth include: Overview of protein crystals growth, in the ...

A cluster of three galaxies was imaged with the help of the Hubble telescope's camera.

Using the Hubble Telescope's Advanced Camera (ACS) and Wide Field Camera 3 (WFC3), a cluster of three galaxies was imaged.  As shown in the image, the two galaxies have merged, scientists say, just as the two galaxies in the upper right appear to be interacting with each other, it is, in fact, stars.  Its long trails and the gas spreading from both of them gives the impression that these two have just collided with each other very fast.  In the lower left of the image is the bowling-ball-sized galaxy. Scientists say that the interaction between two galaxies occurs over a long time period, however, rarely will the galaxies collide with each other.  These galaxies are so close to each other in space that they form a cluster, which scientists have named NGC 7764A.  The mass between these galaxies has caused the formation of a shape at the end that, from the point of view of our solar system, resembles the starship known as the USS Enterprise from Star Trek. This gr...