Skip to main content

Researchers have discovered dark matter in the Milky Way.


If we divide 100% of the universe,then we come to know that 85% is of Dark Matter, we do not know much about Dark Matter,and today there is a mystery about Dark Matter.  Dark matter was believed to be responsible for the kind of mysterious electromagnetic signals found in galaxies, but a new research has rejected it.  The first researchers expected this, behind the mysterious electromagnetic signals is dark matter, it is caused by dark matter.

The universe has dark matter, which cannot be seen, because it does not absorb, reflect or emit light, the effect of dark matter is present on other matter. We can understand this, such as gravitational forces. To explain the gravitational forces holding together we need dark matter.

Physicists have suggested that dark matter is a closely related pair of neutrinos, called sterile neutrinos, neutrinos — sub-nuclear particles with no charge, that are released during nuclear reactions inside the Sun. The neutrino possesses a small amount of mass, usually a particle of this mass is not explained by physical standard models.  Physicists have suggested a sterile neutrino, that it is an imaginary particle, that dark matter may be responsible for its mass.

Ben Safdi, co-author and assistant professor of physics at UM, says that our researchers should be able to detect sterile neutrinos. Researchers scan the galaxies to detect dark matter, to understand this electromagnetic radiation in the form of X-ray emission. In 2014, a seminal work discovered additional X-ray emission from nearby galaxies and galaxy clusters, with Ben Safdi stating that the emission was consistent with the black matter decay of sterile neutrinos  Is generated.

Objects in the Milky Way were taken by the XMM-Newton Space X-ray Telescope, yet no evidence has been found from the raw data as to what a sterile neutrino is, whether it contains dark matter. Space-based X-ray telescopes, such as the XMM-Newton telescope, point to dark-matter-rich environments, in the form of X-ray signals, to discover this faint electromagnetic radiation. The discovery, made in 2014, is named X-ray emission "3.5 kV line", kV meaning kilo-electronvolts, where the signal appears on X-ray detectors. Using 20 years of archival data, taken by the XMM-Newton Space X-ray Telescope, researchers have discovered a "3.5 keV line" in the Milky Way that physicists had hoped to find around dark matter galaxies. Pass collects, analyzes looked at nearby galaxies and galaxy clusters, so each of those images would have captured some columns of the Milky Way dark matter halo. 

Rod of Berkeley Lab says that we see that there must be some flow of dark matter everywhere from the Milky Way halo, because the location of the solar system is in the galaxy, and we have also taken advantage of this fact, we know the study  Well, we live in a halo of dark matter. Christopher Desert, a study co-author who is a physics researcher and Ph.D. The UM student said that in galaxy clusters where the 3.5 kV line is observed, they also have large background signals, which act as noise in observations, and can make it difficult to pinpoint specific signals, which are dark.  May be related to substance.

XMM-Newton has taken images of different stars and individual objects in the Milky Way, taken, in these images, the researchers mask objects of original interest, allowing for a very easy dark environment, including dark The radiance of the decay of matter was discovered, allowing researchers to test such observations for an unprecedented level of sterile neutrino dark matter, combining over 20 years. If indeed sterile neutrinos were dark matter, and their decay emits a 3.5 kV line, then Safdi and his fellow researchers should observe that line in their analysis, but right now Safdi and his fellow researchers must find sterile neutrino dark matter, No evidence was found for.

Comments

Popular posts from this blog

JWST Just Dropped a Space Banger – Meet HH 30, the Cosmic Baby Star with an Attitude!

  ๐Ÿš€Hubble Found It, Webb Flexed on It! NASA, ESA, and CSA’s James Webb Space Telescope (JWST) just hit us with another mind-blowing “Picture of the Month,” and this time, it’s all about HH 30 —a baby star with a dramatic flair! Sitting pretty in the Taurus Molecular Cloud, this young star is rocking a protoplanetary disc that’s literally glowing with potential future planets. And oh, it’s got some serious jets and a disc wind to show off!   ๐Ÿ’ซ What’s So Special About HH 30? Ever heard of Herbig-Haro objects? No? Cool, neither did most of us until now! These are glowing gas clouds marking the tantrums of young stars as they spit out jets of gas at supersonic speeds. HH 30 is one of them, but with a twist—it’s a prototype edge-on disc, meaning we get a front-row seat to the magic of planet formation!   ๐Ÿ“ก Webb, Hubble & ALMA—The Ultimate Space Detective Team.   To break down HH 30’s secrets, astronomers went full detective mode using:   ✔️...

Solar Storm Shocker: Earth Gets a Cosmic Makeover with Two New Radiation Belts!

  The May 2024 solar storm formed two new radiation belts between the Van Allen Belts, with one containing protons, creating a unique composition never observed before. Picture this: May 2024, the Sun throws a massive tantrum, sending a solar storm hurtling toward Earth. The result? Stunning auroras light up the skies, GPS systems go haywire, and—wait for it—Earth gets two brand-new *temporary* radiation belts! That’s right, our planet just got a cosmic upgrade, thanks to the largest solar storm in two decades. And no, this isn’t a sci-fi movie plot—it’s real science, folks!   Thanks to NASA’s Colorado Inner Radiation Belt Experiment (CIRBE) satellite, scientists discovered these new belts, which are like Earth’s Van Allen Belts’ quirky cousins. Published on February 6, 2025, in the *Journal of Geophysical Research: Space Physics*, this discovery is a game-changer for space research, especially for protecting satellites and astronauts from solar storm shenanigans. ...

NASA/ESA Hubble Telescope Captures Image of Supernova to Aid Distance Measurements.

  The Hubble Space Telescope has recently captured a striking image of a supernova-hosting galaxy, located approximately 600 million light-years away in the constellation Gemini. This image, taken about two months after the discovery of supernova SN 2022aajn, reveals a bright blue dot at the center, signifying the explosive event. Although SN 2022aajn was first announced in November 2022, it has not yet been the subject of extensive research. However, Hubble's interest in this particular supernova lies in its classification as a Type Ia supernova, a type that is key to measuring cosmic distances. Type Ia supernovae occur when a star's core collapses, and they are particularly useful for astronomers because they have a predictable intrinsic brightness. No matter how far away a Type Ia supernova is, it emits the same amount of light. By comparing its observed brightness to this known luminosity, astronomers can calculate how far away the supernova — and its host galaxy — are from...