Skip to main content

Webb Telescope Unveils Striking Details of a Prominent Protostar in Perseus.

 



This month's featured image from the NASA/ESA/CSA James Webb Space Telescope provides a detailed glimpse of the Herbig Haro object 797 (HH 797). Herbig-Haro objects, such as HH 797, are radiant areas encircling newly formed stars, specifically protostars. These objects take shape when the stellar winds or gas jets emitted by protostars generate shockwaves upon colliding with adjacent gas and dust at high velocities. HH 797, dominating the lower section of the image, is situated in proximity to the young open star cluster IC 348, found near the eastern edge of the Perseus dark cloud complex. The luminous infrared features in the upper part of the image are believed to harbor two additional protostars.


This captivating image was captured using the Webb's Near-InfraRed Camera (NIRCam). Infrared imaging proves instrumental in studying newborn stars and their outflows, especially since the youngest stars are typically still enveloped within the gas and dust from which they originate. In the case of Herbig-Haro objects, the infrared emission from the star's outflows permeates the obstructing gas and dust, rendering them well-suited for observation with Webb's highly sensitive infrared instruments.


 Turbulent conditions within these regions excite molecules like molecular hydrogen and carbon monoxide, causing them to emit infrared light. Webb's NIRCam excels at capturing the structure of these outflows, particularly the hot molecules with temperatures reaching thousands of degrees Celsius, stimulated by shocks within the stellar environment.


Previous ground-based observations indicated intriguing characteristics of the cold molecular gas associated with HH 797. These findings revealed a spatial distribution where the majority of the red-shifted gas (moving away from us) was concentrated in the south (bottom right), while the blue-shifted gas (moving towards us) was situated in the north (bottom left). Additionally, a velocity gradient across the outflow suggested a rotation effect, leading astronomers to hypothesize a single outflow. However, the higher resolution image from the Webb telescope challenges this assumption, unveiling two nearly parallel outflows with distinct series of shocks, clarifying the observed velocity asymmetries.


The source, located in the small dark region at the bottom right of the center, previously identified as a single star, is now revealed as a double star, with each star generating its own dynamic outflow. The image also showcases other outflows, including one emanating from the protostar in the top right of the center, along with its illuminated cavity walls. Notably, HH 797 is positioned directly north of HH 211, separated by approximately 30 arcseconds, and HH 211 was featured in a Webb image release in September 2023.






Comments

Popular posts from this blog

JWST Just Dropped a Space Banger – Meet HH 30, the Cosmic Baby Star with an Attitude!

  ๐Ÿš€Hubble Found It, Webb Flexed on It! NASA, ESA, and CSA’s James Webb Space Telescope (JWST) just hit us with another mind-blowing “Picture of the Month,” and this time, it’s all about HH 30 —a baby star with a dramatic flair! Sitting pretty in the Taurus Molecular Cloud, this young star is rocking a protoplanetary disc that’s literally glowing with potential future planets. And oh, it’s got some serious jets and a disc wind to show off!   ๐Ÿ’ซ What’s So Special About HH 30? Ever heard of Herbig-Haro objects? No? Cool, neither did most of us until now! These are glowing gas clouds marking the tantrums of young stars as they spit out jets of gas at supersonic speeds. HH 30 is one of them, but with a twist—it’s a prototype edge-on disc, meaning we get a front-row seat to the magic of planet formation!   ๐Ÿ“ก Webb, Hubble & ALMA—The Ultimate Space Detective Team.   To break down HH 30’s secrets, astronomers went full detective mode using:   ✔️...

Solar Storm Shocker: Earth Gets a Cosmic Makeover with Two New Radiation Belts!

  The May 2024 solar storm formed two new radiation belts between the Van Allen Belts, with one containing protons, creating a unique composition never observed before. Picture this: May 2024, the Sun throws a massive tantrum, sending a solar storm hurtling toward Earth. The result? Stunning auroras light up the skies, GPS systems go haywire, and—wait for it—Earth gets two brand-new *temporary* radiation belts! That’s right, our planet just got a cosmic upgrade, thanks to the largest solar storm in two decades. And no, this isn’t a sci-fi movie plot—it’s real science, folks!   Thanks to NASA’s Colorado Inner Radiation Belt Experiment (CIRBE) satellite, scientists discovered these new belts, which are like Earth’s Van Allen Belts’ quirky cousins. Published on February 6, 2025, in the *Journal of Geophysical Research: Space Physics*, this discovery is a game-changer for space research, especially for protecting satellites and astronauts from solar storm shenanigans. ...

NASA/ESA Hubble Telescope Captures Image of Supernova to Aid Distance Measurements.

  The Hubble Space Telescope has recently captured a striking image of a supernova-hosting galaxy, located approximately 600 million light-years away in the constellation Gemini. This image, taken about two months after the discovery of supernova SN 2022aajn, reveals a bright blue dot at the center, signifying the explosive event. Although SN 2022aajn was first announced in November 2022, it has not yet been the subject of extensive research. However, Hubble's interest in this particular supernova lies in its classification as a Type Ia supernova, a type that is key to measuring cosmic distances. Type Ia supernovae occur when a star's core collapses, and they are particularly useful for astronomers because they have a predictable intrinsic brightness. No matter how far away a Type Ia supernova is, it emits the same amount of light. By comparing its observed brightness to this known luminosity, astronomers can calculate how far away the supernova — and its host galaxy — are from...