Skip to main content

NASA’s Lucy Spacecraft Unveils Complex Structures on Asteroid Dinkinesh During Historic Flyby.

 

Panels a, b, and c each show stereographic image pairs of asteroid Dinkinesh taken by NASA’s Lucy spacecraft’s L’LORRI Instrument around closest approach on Nov. 1, 2023. Yellow and rose dots indicate the trough and ridge features, respectively. These images have been sharpened and processed to enhance contrast. Panel d shows a side view of Dinkinesh and its satellite Selam taken a few minutes after closest approach.


Images from the November 2023 flyby of asteroid Dinkinesh by NASA’s Lucy spacecraft reveal a trough on Dinkinesh where a large piece, approximately a quarter of the asteroid, shifted suddenly. The images also show a ridge and a separate contact binary satellite, now known as Selam. Scientists interpret this complex structure as evidence of Dinkinesh and Selam's significant internal strength and dynamic history.


“We want to understand the strengths of small bodies in our solar system because that’s critical for understanding how planets like Earth got here,” explained Hal Levison, Lucy principal investigator at the Boulder, Colorado, branch of the Southwest Research Institute in San Antonio, Texas. “Basically, the planets formed when zillions of smaller objects orbiting the Sun, like asteroids, ran into each other. How objects behave when they hit each other, whether they break apart or stick together, has a lot to do with their strength and internal structure.” Levison is the lead author of a paper on these observations published on May 29 in Nature.


Researchers believe that Dinkinesh is revealing its internal structure by how it has responded to stress. Over millions of years, the asteroid's rotation in sunlight caused small torques due to thermal radiation emitted from its warm surface. These torques gradually increased Dinkinesh's rotational speed, building up centrifugal stresses until part of the asteroid shifted into a more elongated shape. This event likely led to debris entering a close orbit, which then formed the ridge and the satellite Selam.


Stereo movie of asteroid Dinkinesh from NASA’s Lucy spacecraft flyby on Nov. 1, 2023.


If Dinkinesh were much weaker, more like a fluid pile of sand, its particles would have gradually moved toward the equator and flown off into orbit as it spun faster. However, the images suggest that it held together longer, more like a rock, with more strength than a fluid, eventually fragmenting into large pieces under stress. (Although the strength needed to fragment a small asteroid like Dinkinesh is minuscule compared to most rocks on Earth.)


“The trough suggests an abrupt failure, more like an earthquake with a gradual buildup of stress and then a sudden release, instead of a slow process like a sand dune forming,” said Keith Noll of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, project scientist for Lucy and a co-author of the paper.


“These features tell us that Dinkinesh has some strength, and they let us do a little historical reconstruction to see how this asteroid evolved,” said Levison. “It broke, things moved apart and formed a disk of material during that failure, some of which rained back onto the surface to make the ridge.”


Researchers believe some of the material in the disk formed the moon Selam, which is actually two objects touching each other, a configuration called a contact binary. Details of how this unusual moon formed remain mysterious.


Stereo movie of Selam from NASA’s Lucy spacecraft flyby on Nov. 1, 2023.


Dinkinesh and its satellite are the first two of 11 asteroids that Lucy’s team plans to explore over its 12-year journey. After skimming the inner edge of the main asteroid belt, Lucy is now heading back toward Earth for a gravity assist in December 2024. This close flyby will propel the spacecraft back through the main asteroid belt to observe asteroid Donaldjohanson in 2025, and then on to the first encounters with the Trojan asteroids that lead and trail Jupiter in its orbit of the Sun, beginning in 2027.


Lucy’s principal investigator is based at the Boulder, Colorado, branch of Southwest Research Institute, headquartered in San Antonio. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering, and safety and mission assurance. Lockheed Martin Space in Littleton, Colorado, built and operates the spacecraft. Lucy is the 13th mission in NASA’s Discovery Program, which is managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the Science Mission Directorate at NASA Headquarters in Washington.

Comments

Popular posts from this blog

NASA/ESA Hubble Telescope Captures Image of Supernova to Aid Distance Measurements.

  The Hubble Space Telescope has recently captured a striking image of a supernova-hosting galaxy, located approximately 600 million light-years away in the constellation Gemini. This image, taken about two months after the discovery of supernova SN 2022aajn, reveals a bright blue dot at the center, signifying the explosive event. Although SN 2022aajn was first announced in November 2022, it has not yet been the subject of extensive research. However, Hubble's interest in this particular supernova lies in its classification as a Type Ia supernova, a type that is key to measuring cosmic distances. Type Ia supernovae occur when a star's core collapses, and they are particularly useful for astronomers because they have a predictable intrinsic brightness. No matter how far away a Type Ia supernova is, it emits the same amount of light. By comparing its observed brightness to this known luminosity, astronomers can calculate how far away the supernova — and its host galaxy — are from...

Solar Storm Shocker: Earth Gets a Cosmic Makeover with Two New Radiation Belts!

  The May 2024 solar storm formed two new radiation belts between the Van Allen Belts, with one containing protons, creating a unique composition never observed before. Picture this: May 2024, the Sun throws a massive tantrum, sending a solar storm hurtling toward Earth. The result? Stunning auroras light up the skies, GPS systems go haywire, and—wait for it—Earth gets two brand-new *temporary* radiation belts! That’s right, our planet just got a cosmic upgrade, thanks to the largest solar storm in two decades. And no, this isn’t a sci-fi movie plot—it’s real science, folks!   Thanks to NASA’s Colorado Inner Radiation Belt Experiment (CIRBE) satellite, scientists discovered these new belts, which are like Earth’s Van Allen Belts’ quirky cousins. Published on February 6, 2025, in the *Journal of Geophysical Research: Space Physics*, this discovery is a game-changer for space research, especially for protecting satellites and astronauts from solar storm shenanigans. ...

Tropical Cyclone Sean Hits Western Australia, Breaking Rainfall Records and Causing Damage.

  On January 17, 2025, a tropical low formed over the Indian Ocean off Western Australia. By January 19, the system had intensified into Tropical Cyclone Sean, marking the second tropical cyclone of Australia’s 2024–2025 season. NASA’s Terra satellite, using the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument, captured a detailed image of the storm at around 10 a.m. local time (02:00 Universal Time) on January 20, 2025. Later that same day, Cyclone Sean reached its peak strength as a Category 4 storm. Despite staying offshore and not making landfall, Cyclone Sean still brought significant impacts to the Pilbara coast. The Australian Bureau of Meteorology (BoM) reported that Karratha, a coastal city in the region, received a staggering 274.4 millimeters (10.8 inches) of rain in just 24 hours, setting a new single-day rainfall record for the city. The powerful storm caused widespread flooding, with roads submerged, homes affected, and power infrastructure damaged. Se...