Skip to main content

Astronomers Uncover Early Universe’s Rapidly Feeding Black Hole, Offering Clues on Supermassive Black Hole Growth.

This illustration depicts a red, early-universe dwarf galaxy with a rapidly feeding black hole at its center, discovered just 1.5 billion years after the Big Bang using data from NASA’s James Webb Space Telescope and Chandra X-ray Observatory. The black hole is consuming matter at a rate over 40 times the theoretical limit, offering new insights into how supermassive black holes grew so quickly in the early universe.

 

A new discovery has unveiled a rapidly feeding black hole at the heart of a dwarf galaxy just 1.5 billion years after the Big Bang. This black hole, dubbed LID-568, is devouring matter at an astonishing rate — more than 40 times the theoretical limit, providing valuable new insights into the growth of supermassive black holes in the early universe.


Using data from NASA’s James Webb Space Telescope (JWST) and Chandra X-ray Observatory, astronomers identified LID-568 hidden in the Chandra X-ray Observatory’s COSMOS legacy survey. This survey, which includes over 4.6 million seconds of data, revealed a population of galaxies bright in X-ray light but invisible in optical and near-infrared wavelengths. By following up with JWST’s powerful infrared sensitivity, the team successfully detected faint emissions associated with LID-568, confirming its existence.


Supermassive black holes, which reside at the centers of most galaxies, have long puzzled scientists due to their rapid growth early in the universe’s history. How these objects grew so large in such a short amount of time is still not fully understood. The discovery of LID-568, with its extreme rate of feeding, could provide the missing piece of the puzzle.


LID-568’s feeding rate exceeds the Eddington limit — the theoretical maximum rate at which a black hole can accrete material before the outward pressure from radiation balances its inward gravitational pull. In the case of LID-568, this limit is surpassed by over 40 times, a phenomenon previously considered rare. The intense accretion suggests that a substantial portion of the black hole’s mass may have been added in a single burst of rapid feeding.


These results offer new insights into the formation of supermassive black holes from smaller "seeds," which are believed to have originated from the death of the first stars (light seeds) or the direct collapse of gas clouds (heavy seeds). While previous theories have proposed these mechanisms, observational evidence has been scarce until now. The findings from LID-568 suggest that a significant portion of a black hole’s growth could occur during a single episode of intense accretion, regardless of whether the black hole began as a light or heavy seed.


Lead researcher Hyewon Suh, an astronomer at the International Gemini Observatory/NSF NOIRLab, explained, "A significant portion of mass growth can occur during a single episode of rapid feeding, regardless of the origin of the black hole’s seed."


These groundbreaking observations provide crucial data for understanding the early universe’s black holes and could help resolve long-standing mysteries about how supermassive black holes came to exist so early in cosmic history.


A detailed study of the discovery is published in Nature Astronomy under the title A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST.

Comments

Popular posts from this blog

JWST Just Dropped a Space Banger – Meet HH 30, the Cosmic Baby Star with an Attitude!

  🚀Hubble Found It, Webb Flexed on It! NASA, ESA, and CSA’s James Webb Space Telescope (JWST) just hit us with another mind-blowing “Picture of the Month,” and this time, it’s all about HH 30 —a baby star with a dramatic flair! Sitting pretty in the Taurus Molecular Cloud, this young star is rocking a protoplanetary disc that’s literally glowing with potential future planets. And oh, it’s got some serious jets and a disc wind to show off!   💫 What’s So Special About HH 30? Ever heard of Herbig-Haro objects? No? Cool, neither did most of us until now! These are glowing gas clouds marking the tantrums of young stars as they spit out jets of gas at supersonic speeds. HH 30 is one of them, but with a twist—it’s a prototype edge-on disc, meaning we get a front-row seat to the magic of planet formation!   📡 Webb, Hubble & ALMA—The Ultimate Space Detective Team.   To break down HH 30’s secrets, astronomers went full detective mode using:   ✔️...

Solar Storm Shocker: Earth Gets a Cosmic Makeover with Two New Radiation Belts!

  The May 2024 solar storm formed two new radiation belts between the Van Allen Belts, with one containing protons, creating a unique composition never observed before. Picture this: May 2024, the Sun throws a massive tantrum, sending a solar storm hurtling toward Earth. The result? Stunning auroras light up the skies, GPS systems go haywire, and—wait for it—Earth gets two brand-new *temporary* radiation belts! That’s right, our planet just got a cosmic upgrade, thanks to the largest solar storm in two decades. And no, this isn’t a sci-fi movie plot—it’s real science, folks!   Thanks to NASA’s Colorado Inner Radiation Belt Experiment (CIRBE) satellite, scientists discovered these new belts, which are like Earth’s Van Allen Belts’ quirky cousins. Published on February 6, 2025, in the *Journal of Geophysical Research: Space Physics*, this discovery is a game-changer for space research, especially for protecting satellites and astronauts from solar storm shenanigans. ...

NASA/ESA Hubble Telescope Captures Image of Supernova to Aid Distance Measurements.

  The Hubble Space Telescope has recently captured a striking image of a supernova-hosting galaxy, located approximately 600 million light-years away in the constellation Gemini. This image, taken about two months after the discovery of supernova SN 2022aajn, reveals a bright blue dot at the center, signifying the explosive event. Although SN 2022aajn was first announced in November 2022, it has not yet been the subject of extensive research. However, Hubble's interest in this particular supernova lies in its classification as a Type Ia supernova, a type that is key to measuring cosmic distances. Type Ia supernovae occur when a star's core collapses, and they are particularly useful for astronomers because they have a predictable intrinsic brightness. No matter how far away a Type Ia supernova is, it emits the same amount of light. By comparing its observed brightness to this known luminosity, astronomers can calculate how far away the supernova — and its host galaxy — are from...