Skip to main content

Scientists Detect First Evidence of Pair of Black Holes Disrupting Gas Cloud in Distant Galaxy.

 

This image is concept illustrates a pair of monster black holes swirling in a gas cloud, a recurring outburst known as AT 2021hdr, studied by NASA’s Swift Observatory and the Zwicky Transient Facility.


A groundbreaking discovery using NASA’s Neil Gehrels Swift Observatory has revealed the signal from a pair of supermassive black holes disrupting a gas cloud in the center of a distant galaxy, offering new insights into the violent processes occurring in galactic cores.*


The event, named AT 2021hdr, marks the first time astronomers have observed a pair of black holes interacting with a gas cloud in such a unique way. The phenomenon, which recurs every few months, was first detected in March 2021 by the Caltech-led Zwicky Transient Facility (ZTF) at Palomar Observatory in California.


Dr. Lorena Hernรกndez-Garcรญa, an astrophysicist at the Millennium Institute of Astrophysics and the University of Valparaรญso in Chile, explained, “We think that a gas cloud engulfed the black holes. As they orbit each other, the black holes interact with the cloud, perturbing and consuming its gas. This produces an oscillating pattern in the light from the system.”


The black hole pair resides in the center of the galaxy 2MASX J21240027+3409114, located about 1 billion light-years away in the constellation Cygnus. Together, the black holes contain a staggering 40 million times the mass of the Sun. The pair is separated by approximately 16 billion miles (26 billion kilometers) — a distance so small that light takes only a day to travel between them.


Scientists believe that the black holes complete one orbit every 130 days, and in around 70,000 years, they will collide and merge into a single, even more massive black hole. 


The ZTF had initially flagged the event as a potential supernova, but as further outbursts were detected, the team began to reconsider the nature of the source. “Each subsequent event has helped us refine our model of what’s going on in the system,” said co-author Alejandra Muรฑoz-Arancibia, an astrophysicist at the Millennium Institute and the University of Chile.


Using Swift’s observations, the team determined that the oscillations in light observed by ZTF were mirrored in ultraviolet and X-ray wavelengths, confirming that the phenomenon involved more than just a typical supernova. After considering several possible explanations, Hernรกndez-Garcรญa and her team concluded that the event is likely caused by a tidal disruption of a gas cloud—an occurrence where the intense gravitational forces of the black holes tear apart the cloud, forming filaments of gas that heat up as they interact with the black holes.


As the black holes orbit, their gravitational forces continue to stir and consume the gas, producing the fluctuating light patterns detected by Swift and ZTF. “We’re continuing to monitor this system to better understand the dynamics at play and refine our models of how these events occur,” said Hernรกndez-Garcรญa.


The discovery also provides a unique opportunity to study the galaxy itself, which is currently merging with a neighboring galaxy, another intriguing aspect of this system highlighted in the team's recent paper.


The Swift mission, which marks its 20th anniversary next year, continues to be a key tool in advancing our understanding of the universe. “Swift has revolutionized how we study transient cosmic events,” said S. Bradley Cenko, Swift’s principal investigator at NASA’s Goddard Space Flight Center. “There’s still so much more it has to teach us.”


NASA’s Swift mission is part of a global collaboration, working with partners including Penn State, Los Alamos National Laboratory, Northrop Grumman Space Systems, the University of Leicester, Brera Observatory, and the Italian Space Agency. Together, these missions help solve the mysteries of our ever-changing cosmos.

Comments

Popular posts from this blog

JWST Just Dropped a Space Banger – Meet HH 30, the Cosmic Baby Star with an Attitude!

  ๐Ÿš€Hubble Found It, Webb Flexed on It! NASA, ESA, and CSA’s James Webb Space Telescope (JWST) just hit us with another mind-blowing “Picture of the Month,” and this time, it’s all about HH 30 —a baby star with a dramatic flair! Sitting pretty in the Taurus Molecular Cloud, this young star is rocking a protoplanetary disc that’s literally glowing with potential future planets. And oh, it’s got some serious jets and a disc wind to show off!   ๐Ÿ’ซ What’s So Special About HH 30? Ever heard of Herbig-Haro objects? No? Cool, neither did most of us until now! These are glowing gas clouds marking the tantrums of young stars as they spit out jets of gas at supersonic speeds. HH 30 is one of them, but with a twist—it’s a prototype edge-on disc, meaning we get a front-row seat to the magic of planet formation!   ๐Ÿ“ก Webb, Hubble & ALMA—The Ultimate Space Detective Team.   To break down HH 30’s secrets, astronomers went full detective mode using:   ✔️...

Solar Storm Shocker: Earth Gets a Cosmic Makeover with Two New Radiation Belts!

  The May 2024 solar storm formed two new radiation belts between the Van Allen Belts, with one containing protons, creating a unique composition never observed before. Picture this: May 2024, the Sun throws a massive tantrum, sending a solar storm hurtling toward Earth. The result? Stunning auroras light up the skies, GPS systems go haywire, and—wait for it—Earth gets two brand-new *temporary* radiation belts! That’s right, our planet just got a cosmic upgrade, thanks to the largest solar storm in two decades. And no, this isn’t a sci-fi movie plot—it’s real science, folks!   Thanks to NASA’s Colorado Inner Radiation Belt Experiment (CIRBE) satellite, scientists discovered these new belts, which are like Earth’s Van Allen Belts’ quirky cousins. Published on February 6, 2025, in the *Journal of Geophysical Research: Space Physics*, this discovery is a game-changer for space research, especially for protecting satellites and astronauts from solar storm shenanigans. ...

NASA/ESA Hubble Telescope Captures Image of Supernova to Aid Distance Measurements.

  The Hubble Space Telescope has recently captured a striking image of a supernova-hosting galaxy, located approximately 600 million light-years away in the constellation Gemini. This image, taken about two months after the discovery of supernova SN 2022aajn, reveals a bright blue dot at the center, signifying the explosive event. Although SN 2022aajn was first announced in November 2022, it has not yet been the subject of extensive research. However, Hubble's interest in this particular supernova lies in its classification as a Type Ia supernova, a type that is key to measuring cosmic distances. Type Ia supernovae occur when a star's core collapses, and they are particularly useful for astronomers because they have a predictable intrinsic brightness. No matter how far away a Type Ia supernova is, it emits the same amount of light. By comparing its observed brightness to this known luminosity, astronomers can calculate how far away the supernova — and its host galaxy — are from...