Skip to main content

NASA’s James Webb Space Telescope Reveals Hidden Asteroids in the Main Belt.

 



The James Webb Space Telescope (JWST), renowned for its deep space observations, has expanded its scope to include the study of asteroids, uncovering a surprising discovery in the main asteroid belt between Mars and Jupiter. A team led by researchers at the Massachusetts Institute of Technology (MIT) has used Webb’s advanced capabilities to identify 138 previously undetected small asteroids, ranging from the size of a bus to that of a stadium. These asteroids, which are smaller than any previously observed in the main asteroid belt, have provided new insights into the evolution of solar system bodies.


By analyzing Webb’s observations of a distant star, the team discovered a population of asteroids that were otherwise too small to be detected by traditional ground-based telescopes. Understanding the distribution and size of these asteroids sheds light on how collisions in the asteroid belt have shaped their current forms and how some might have escaped the belt over time. These processes are crucial to understanding how meteorites, some of which end up on Earth, are formed.


Tom Greene, an astrophysicist at NASA’s Ames Research Center, emphasized the significance of this finding: “We now understand more about how small objects in the asteroid belt are formed and how many there could be. Asteroids of this size likely formed from collisions between larger bodies and are expected to drift toward the Earth-Sun vicinity.”


This research not only adds to our understanding of asteroid evolution but also has implications for planetary defense. Insights from this study will support NASA’s Asteroid Threat Assessment Project (ATAP), which is focused on modeling and mitigating the risks of asteroid impacts with Earth. ATAP, working with NASA’s Planetary Defense Coordination Office, aims to assess the potential threat posed by near-Earth objects (NEOs) and develop strategies for mitigating such risks.


Jessie Dotson, an astrophysicist at Ames and a member of ATAP, highlighted the broader implications of the findings: “Understanding the sizes, numbers, and evolutionary history of smaller main belt asteroids provides crucial background for studying near-Earth asteroids that we monitor for planetary defense.”




The breakthrough was made possible by a novel image-processing technique developed by Artem Burdanov and Julien de Wit at MIT. The team analyzed over 10,000 images of the star TRAPPIST-1, which were originally taken to investigate the potential for life on exoplanets orbiting the star. The asteroids, which were likely passing in front of the star during its observation, were revealed thanks to their infrared brightness—Webb’s primary detection wavelength.


In addition to advancing our understanding of the asteroid belt, NASA will continue to study these objects with upcoming missions. The Near-Earth Object (NEO) Surveyor, set to launch in the near future, will be the first space telescope dedicated to searching for potentially hazardous asteroids and comets that might pose a risk to Earth.


The groundbreaking research paper, "Detections of Decameter Main-Belt Asteroids with JWST," was published on December 9 in Nature.


As the world’s premier space observatory, the James Webb Space Telescope continues to offer unparalleled views of our solar system and beyond, solving long-standing mysteries about the origins and evolution of celestial bodies. Webb is a collaborative effort between NASA, the European Space Agency (ESA), and the Canadian Space Agency (CSA).



Comments

Popular posts from this blog

JWST Just Dropped a Space Banger – Meet HH 30, the Cosmic Baby Star with an Attitude!

  🚀Hubble Found It, Webb Flexed on It! NASA, ESA, and CSA’s James Webb Space Telescope (JWST) just hit us with another mind-blowing “Picture of the Month,” and this time, it’s all about HH 30 —a baby star with a dramatic flair! Sitting pretty in the Taurus Molecular Cloud, this young star is rocking a protoplanetary disc that’s literally glowing with potential future planets. And oh, it’s got some serious jets and a disc wind to show off!   💫 What’s So Special About HH 30? Ever heard of Herbig-Haro objects? No? Cool, neither did most of us until now! These are glowing gas clouds marking the tantrums of young stars as they spit out jets of gas at supersonic speeds. HH 30 is one of them, but with a twist—it’s a prototype edge-on disc, meaning we get a front-row seat to the magic of planet formation!   📡 Webb, Hubble & ALMA—The Ultimate Space Detective Team.   To break down HH 30’s secrets, astronomers went full detective mode using:   ✔️...

Solar Storm Shocker: Earth Gets a Cosmic Makeover with Two New Radiation Belts!

  The May 2024 solar storm formed two new radiation belts between the Van Allen Belts, with one containing protons, creating a unique composition never observed before. Picture this: May 2024, the Sun throws a massive tantrum, sending a solar storm hurtling toward Earth. The result? Stunning auroras light up the skies, GPS systems go haywire, and—wait for it—Earth gets two brand-new *temporary* radiation belts! That’s right, our planet just got a cosmic upgrade, thanks to the largest solar storm in two decades. And no, this isn’t a sci-fi movie plot—it’s real science, folks!   Thanks to NASA’s Colorado Inner Radiation Belt Experiment (CIRBE) satellite, scientists discovered these new belts, which are like Earth’s Van Allen Belts’ quirky cousins. Published on February 6, 2025, in the *Journal of Geophysical Research: Space Physics*, this discovery is a game-changer for space research, especially for protecting satellites and astronauts from solar storm shenanigans. ...

NASA/ESA Hubble Telescope Captures Image of Supernova to Aid Distance Measurements.

  The Hubble Space Telescope has recently captured a striking image of a supernova-hosting galaxy, located approximately 600 million light-years away in the constellation Gemini. This image, taken about two months after the discovery of supernova SN 2022aajn, reveals a bright blue dot at the center, signifying the explosive event. Although SN 2022aajn was first announced in November 2022, it has not yet been the subject of extensive research. However, Hubble's interest in this particular supernova lies in its classification as a Type Ia supernova, a type that is key to measuring cosmic distances. Type Ia supernovae occur when a star's core collapses, and they are particularly useful for astronomers because they have a predictable intrinsic brightness. No matter how far away a Type Ia supernova is, it emits the same amount of light. By comparing its observed brightness to this known luminosity, astronomers can calculate how far away the supernova — and its host galaxy — are from...